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SUMMARY

One of the major side effects of aminoglycoside antibiotics (AG) is ototoxicity. The authors review the
literature revealing many controversies on every aspect of this side-effect. Although epidemiological stud-
ies have to face the problem of reliable evaluation techniques, the incidence of cochleo- and vestibulotoxic
side-effects has been estimated at 7.5% for each. Netilmicin appears to be less ototoxic. No definite risk
factors can be proposed, although age, length of therapy, bacteremia, fever, liver and renal dysfunction
are probably very important parameters. Most pathological changes at the cochlear level follow a clear
spatial sequence, showing unspecific, degenerative lesions, involving every structure of the cochlea. This
makes it impossible to draw etiopathological conclusions. Recent pharmacokinetic studies have rejected
the *accumulation theory’ of AGs in perilymph, while also in endolymph no accumulation can be found.
Only a few data are available on inner ear tissue levels. Among the different pharmacodynamic hypotheses
on the action of AGs, binding of the drug to acidic glycosaminoglycans in the stria vascularis, and interfer-
ence by the drug with phosphoinositide metabolism in the hair cells seem to be of major importance.
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frequency to a unilateral hearing loss of 20 dB at two frequencies. None of these crite-
ria is very specific, which is demonstrated by Smith et al. [25] who reported a 13%
incidence of control patients who met the criterion of a 15 dB loss at one frequency
or by Davey and Harpur [26] who reported 4 out of 27 patients showing transient
threshold changes of 20-35 dB at two or more frequencies without any ototoxic agent
being administered. An additional problem is the fact that AGs are mostly, if not
exclusively, administered to people who are suffering from severe infections, debili-
tating them to a great extent and rendering them quite unsuitable for study at all.
This may explain in part the intra- and intersubject variability that one encounters
in the different studies. For a good evaluation of cochlear toxicity, it is of great im-
portance to perform the first audiometric test before or within the first 48 h after AG
therapy has been started. As much as 25% [27] and even up to 66% [28] of hospitalized
patients may show pre-existing auditory dysfunction. A drawback of almost all re-
ports is that hearing thresholds are measured only up to 8 kHz, while sufficient evi-
dence exists that AG-induced hearing losses first occur at higher frequencies [29].

Vestibular toxicity might even be more difficult to measure. Many tests have been
used to evaluate vestibular toxicity, all of which have been interpreted in different
ways (sometimes very vaguely defined) by different authors. It has been suggested
that the only good vestibular examination is rotational stimulation with electronys-
tagmographic recording [30]. Doubt can be cast on the feasibility of this type of in-
vestigation because AGs are most often given to patients who are in too bad a clinical
condition for such an awkward test. The question is whether if a rotational test is
impossible, caloric stimulation might be sufficiently reliable to evaluate vestibulotoxi-
city. Many authors appear to answer this question positively [31-39].

Ototoxicity incidence

Many investigators have examined the incidence of cochleo- and vestibulotoxic
side-effects of several AGs. The global incidence of symptomatic ototoxicity has been
estimated at 2%, and of asymptomatic ototoxicity at 10% [40]. Clinical studies pub-
lished between 1975 and 1982 were reviewed by Kahlmeter and Dahlager [41]. Table
IT lists studies which have been published during the last decade. Figures in bold indi-
cate that the data were obtained from prospective trials. It is impossible to introduce
a single common ‘ototoxicity criterion’ for all these studies. If we accept the criteria
as used by the different authors, the overall incidence of cochleo- and vestibulotoxi-
city can be recalculated, the result being shown in Table III.

On the assumption that gentamicin, tobramycin, amikacin and netilmicin are pre-
scribed to the same extent, one can postulate a 7.5% AG-induced cochleotoxicity with
a similar percentage for vestibulotoxicity. Despite a very clear and constant tendency
of netilmicin to less cochleo- and vestibulotoxicity than other AGs, and in contrast
to animal studies, this difference has never been statistically significant in humans,
except in one study where netilmicin was less cochleotoxic than tobramycin
(P=0.037) [55]. It has to be mentioned that the design of the statistically analyzed

(text continued p. 234)
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TABLE IV

RISK FACTORS FOR AMINOGLYCOSIDE OTOTOXICITY

621 311 8 59 [76] [B71 [771 | [78) (0] (511 [79]

Age - = = + - + +
Sex + = = =

Weight =

Length of therapy + + + — +
Total dose - + - - + + o+ +
Mean daily dose + + = + +

Dose per kg - = —

Initial audit dysfunction - - — — -)

Initial creatinine - . + +
Initial creatinine cleararance — + +
Renal dysfunction — _ - ® — +

Concurrent nephrotoxicity =

Liver dysfunction + -
Fever = + -
Hematocrit - +

Bacteremia + -
Urinary tract infection -
Pneumonia —

Shock = =
Diabetes = -
Otitis media

Type of aminoglycoside = +
Mean serum peak - — = % - (4)
Mean serum trough - - = B + + -

Initial serum peak - +
Initial serum trough - -
Initial bicarbonate -

Previous aminoglycoside - + W + +
Furosemide — - — + + +
Clindamycin —

Cephalosporin — - — |
Noise = + + +
Familial predisposition + &

Semistarvation +

Numbers at top are references. Circle=only cochleotoxicity; square =only vestibulotoxicity. Figures are placed
between brackets if the original papers mention them as ‘possible’ risk or non-risk factors.
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epithelium appear to be secondary to the hair cell degeneration. It is not clear
whether strial changes occur as primary or as secondary events.

Sensory hair cells

An excellent review of inner and outer hair cell structure has been given by Lim
[80]. Structural changes at the hair cell level are among the most widely described
findings in AG ototoxicity. Most papers report hair cell loss as investigated by means
of phase-contrast or interference-contrast microscopy [65,74,81-86]. Hair cell dam-
age occurs following distinct sequences [85]. The inner row of the outer hair cells of
the basal turn are the most sensitive to ototoxic damage. A progression is seen from
basis to apex and from OHC I (inner row of outer hair cells) towards OHC III (outer
row of outer hair cells) and subsequently to the inner hair cells [72,83,87]. The start-
ing point of outer hair cell damage in guinea pigs seems to be very distinct. This ‘de-
generation point’ is situated at a distance of about 6-8 mm from the round window.
Degeneration starts at this point and progresses rapidly to the round window and
at a lower speed to the apex [86]. Federspil described the sequence of ototoxic inner
ear damage as follows: (1) hair cells, (2) Deiters’ cells, (3) pillar cells, (4) Hensen’s
and Claudius’s cells [85]. Simultaneous damage to strial tissue is mentioned, which
18 confirmed by Gratacap et al. {87]. The spiral ganglion only shows signs of degene-
ration at a later stage. Early changes can be seen in the auditory hairs [80,88]. Lim
remarked the similarity of these findings to acoustic inner ear damage and believes
impaired protein synthesis to be a possible common basis for these pathologies. Re-
ports which are based only on qualitative studies mention morphological changes in
the lysosomes, which increase in number and size [87], especially in the infracuticular
region of the cell [80]. Similar high concentrations of vesicles are described at the base
of the cell after intoxication. It is not very clear whether mitochondria are affected.
Gratacap and colleagues could not detect any morphological lesions in the mitochon-
dria [87], whereas Lim described mitochondrial swelling [80].

Reissner’s membrane

Vacuolization of the epithelial cells at the endolymphatic surface is described [86,
89]. A remarkable appearance of melanin granules in Reissner’s membrane is re-
ported after kanamycin administration in guinea pigs [87].

Stria vascularis

The stria vascularis is known to be responsible for the generation of the positive
potential of the scala media. It plays an important role in the transport of fluid and
clectrolytes (resorption and active secretion of endolymph) and contains many oxida-
tive enzymes necessary in glucose metabolism. Lesions of the stria, therefore, may
very well produce major changes in endolymph composition, leading to secondary
changes in hair cells. The normal structure of the stria vascularis has been reviewed
in detail by Schuknecht et al. [90], revealing some remarkable similarities with the
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PHARMACOKINETICS

Due to the highly polar cationic state of AGs, their gastrointestinal absorption is
very poor. In contrast, intramuscular and subcutaneous injection results in rapid ab-
sorption (peak concentrations in plasma after 15-90 min). Distribution is limited to
the extracellular fluid. Concentrations in secretions and tissues are low, except for
the renal cortex, the endolymph and perilymph. Binding to plasma albumin is neglig-
ible. AGs are excreted almost entirely by glomerular filtration, the plasma half-life
in humans averaging 2-3 h.

Perilymph

Soon after the discovery of AGs, it became clear that the action of the ototoxicity
had to be situated at the periphery, i.e. in the labyrinth [4]. Early attempts were made
to establish pharmacokinetic studies on AGs in inner ear fluids [5-7]. The results of
these and other studies can be compressed into three major topics.

The first topic is the postulation of a so-called ‘toxic threshold’ of the inner ear
for AGs [102,103]. Serum levels of AGs would have to exceed a critical level before
they could enter the perilymph. This hypothesis could afterwards be rejected by the
pharmacokinetic studies of Federspil et al. [104] and Tran Ba Huy et al. [105], which
showed a linear relationship between dose and perilymph concentration.

The second topic is the accumulation of AGs in perilymph and the postulation that
this phenomenon might explain the specific nature of ototoxicity. It was observed
that after a single administration of the drug, the perilymph concentration equalled
the serum level after several hours and exceeded it manifold after 20 h (Fig. 2a)
[84,85,104,106]. Perilymph half-life was found to be 10~12 h, compared to a serum
half-life of less than 1 h. Repeated administration even enhanced this retention of
the drug in the perilymph [104,107], although this phenomenon was not found by
Harpur [108], and one might argue that it is merely the result of drug accumulation
in the serum [106]. In striking contrast to these many reports, Tran Ba Huy and col-
leagues, using sensitive radioimmunoassay methods, described a perilymph peak lev-
el which was much lower than those described before, and did not find any accumula-
tion of gentamicin (Fig. 2b) [105]. They reported a perilymph half-life of 3 h after
a single injection, while this half-life increased significantly after continuous infusion
[109]. It is not clear how to explain this difference between the half-life of 3 h and
that of 10 h, although Tran Ba Huy and colleagues suggest differences such as choice
of species, preparation of animals, and sampling techniques to be possible explana-
tions [105]. In contrast to Chung et al. [110], neither Ohtani et al. [111] nor Dulon
et al. [112] found any difference in perilymph kinetics after comparable doses of netil-
micin, amikacin and gentamicin, providing strong evidence that other mechanisms
must be responsible for the differences in ototoxicity between different AGs.

The third topic in the pharmacokinetic studies on perilymph concerns the dose—
response characteristics of the drug. After a single intramuscular injection, gentami-
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In conclusion to these many and often quite confusing data, the ‘accumulation
theory’ might appear unable to explain AG-induced ototoxicity. Besides a puzzling
controversy about the existence of any accumulation at all, the actually available
data are unable to explain the vestibular or cochlear preference of the toxicity of
every single AG. Nor can they explain the differences in toxicity between different
AGs, since no difference in pharmacokinetics can be demonstrated.

Endolymph

Very few studies have dealt with endolymph levels of AGs. Federspil and col-
leagues found no major difference between endolymph and perilymph concentration
(endolymph concentration being 80-90% of perilymph concentration after 2 and 5
h, respectively) [104]. Tran Ba Huy and colleagues, on the other hand, showed that
the endolymphatic compartment behaves as a deeper compartment than the perilym-
phatic one, with endolymph to perilymph ratios varying between 0.23 and 0.80
[105,114]. The AGs are taken up very slowly and do not show any substantial accu-
mulation in endolymph. On the other hand, endolymph levels do not show any decay
in a 15-day period following a 2-day constant subcutaneous infusion [109]. The levels
are similar for different doses, implying either that the surrounding tissues act as a
‘buffer’ to take up most of the drug or that endolymph uptake is a saturable process.

Inner ear tissue levels

Most of the information on inner ear tissue levels of AGs was obtained by Tran
Ba Huy et al [115], using experimental animal models. After a single intramuscular
administration of 10 mg/kg body wt., no tissue levels could be detected. If the dose
was raised to 100 mg/kg, gentamicin could be detected in the inner ear tissues. When
peak concentrations were measured after 3 h, the tissue half-life was some 10-13 h.
After continous infusion, tissue levels reached plateau values in 3 h time. The level
of these plateaux increased in a linear way with the dose administered up to a certain
maximum level, at which the tissue uptake appeared to be saturated. The tissue half-
life after 3 h of continuous infusion was 7.3 days. The finding of a tissue t; of 3 h
after a single shot injection, compared to a t. of 7.3 days after a 3-h infusion, was
very suggestive of a process having occurred in this 3-h interval that was responsible
for a decreased clearance of the drug out of the tissue. This process might be interna-
lization and storage of the drug in the cells of the inner ear tissues. Biochemical assays
on inner ear explant culture [116] and tissue homogenates [76] showed that the bind-
ing of AGs to inner ear tissues is a high-affinity, rapidly saturable phenomenon. No
correlation could be found between tissue levels of different AGs and their ototoxic
potential [112].

PHARMACODYNAMICS

Since pharmacokinetics appeared not to be able to explain every aspect of AG-
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Fig. 3. Graphic representation of the hypothetical role of aminoglycosides in phosphoinositide metabo-
lism. (a) Simplified representation of normal phosphoinositide metabolism. PtdInsP2, a phospholipid
which is located in the inner leaflet of the plasma membrane, is cleaved into diacylglycerol and InsP3,
both products playing important roles in cellular functions. One of the functions which might be of partic-
ular interest in outer hair cells is calcium release out of the endoplasmic reticulum. (b) Interference by
aminoglycosides with the former metabolism has been suggested to follow 3 successive stages: (1) binding
of the aminoglycoside (black box) on the plasma membrane, in competition with calcium; (2) active trans-
port of the aminoglycoside through the plasma membrane, possibly via polyamine transport systems; (3)
binding of the aminoglycoside to PtdInsP2, thus eliminating metabolization of this component. PtdInsP-
2=phosphatidylinositol 4,5-diphosphate; InsP3 =inositol triphosphate; R =InsP3-receptor on the endo-
plasmic reticulum.

nase C play a crucial role in signal transduction for a variety of biologically active
substances which activate cellular functions and proliferation [125,126]. A possible
mechanism for which InsP3 might be a second messenger has been speculated to be
the calcium-dependent mobile response of outer hair cells [127]. This remarkable con-
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Localization

Only a few studies have investigated the localization of AG in inner ear tissues.
One of the reasons could be the extremely difficult handling and processing of the
specimens for this kind of study. As Wedeen and colleagues pointed out, AGs are
very hydrophilic molecules, which are easily displaced by processing in aqueous solu-
tions, as long as they are not firmly bound to structures within the specimen [137].
Most of the studies, however, are based on aqueous processing procedures, while
only three studies could be retrieved in which the specimens were snap-frozen, and
consecutively sectioned with a cryostat [138], or freeze-dried and embedded [139,140].
Von Ilberg and colleagues compared the freeze-drying technique with aqueous fixa-
tion and embedding and found marked differences [140].

After single administration, AGs appear at first in the stria vascularis and in the
ligamentum spirale [139]. Between | and 3 h after administration, they also appear
in the perilymph and in the organ of Corti [139], in which primarily the Deiters cells
are strongly stained, while afterwards outer hair cell staining exceeds that of Deiters’
cells [141]. Concentrations start to decrease some 6 h after administration. After peri-
lymphatic perfusion, maximum staining is seen over the inner and outer hair cells,
basilar membrane and nerve tissue of the spiral lamina [89,140]. Daily administration
of high-dose AGs yields staining of Reissner’s membrane and basilar membrane dur-
ing the first 2 days. On the 3rd day of administration, selective staining of the apex
of the outer hair cells of the basal turn is described [142].
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